

ONE HUNDRED YEARS OF STABILITY: THE CASE OF THE BAD-LAD SPLIT

Meeting of the Linguistic Society of America, Austin, TX, January 6th 2017

Thomas Kettig, Department of Linguistics, University of Hawai'i at Mānoa (tkettig@hawaii.edu)

Secondary /æ/-lengthening: historical reports

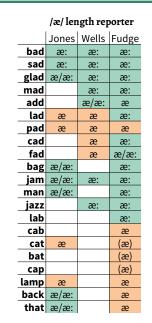
- 20th-century scholars comment on particular /æ/ (TRAP) words being lengthened
 - Jones (1918)
 - 'short' lad, pad, cat, lamp
 - 'long' bad, sad
 - variable glad, bag, man, jam, back, that
 - Wells (1982): "marginally contrastive long /æ:/"
 - 'short' lad, pad, cad, dad, fad
 - 'long' bad, glad, clad, mad, sad, jam, jazz
 - "rare to find contrastive length in environments other than that of a following /d/", especially adjectives
 - Fudge (1977) recorded own (very complex) lexical split
 - Minimal pairs included 'short' verbs jab, drag, flag, waq vs. 'long' noun equivalents; can (modal) vs. can (noun)

What we already know (Kettig 2016)

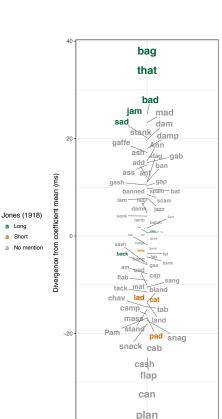
- · Some native speakers intuit 'long' vs. 'short' words
- Phonetic measurements show no minimal pairs consistently differentiated by vowel length alone
- · Observed lengthening deviates from expected coarticulatory hierarchy (Peterson & Lehiste 1960)

Improvement of dataset

- · When preaspiration is present, vowel measurement should include modal and breathy portions of the vowel, excluding true preaspiration (Hejná 2015)
 - · Dataset recoded to separate preaspiration out
 - Vowel duration = modal + breathy voicing
- F1 and F2 measurements also extracted for each token
 - Measured at F1 contour maximum within modal section of vowel


References

- Boersma, P. & D. Weenink. 2016. Proat: doing phonetics by computer. Version 6.0.21. http://www.snat.ong/ Bybee, J. 2001. Phonology and language use. Cambridge: Cambridge University Press. Fabricius, A. H. 2007. Variation and change in the trap and strut vowels of RP: a real time comparison of five acoustic data sets. Journal of the International Phonetic Association 37: 233-200. Fudge, E. 1977. Long and short [ae] in one Southern British speaker's English. Journal of the International Phonetic Association 55-65.
- 55-65. Gahl, S. 2007. "Thyme" and "Time" are not homophones. Word durations in spontaneous speech. Language 84(3): 474–496. Jones, D. 1. 1918. Anoutline of Englich phonetics. Leipzig: Teubner. Kettig, T. 2016. The use-us split: Secondary /æ/lengthening in Southern Standard British English. Proceedings of the Linguistics Society of America (132): 1-14.
- Society or renerce 1(32): 1-14. Kuznetsova, A., P. B. Brockhoff & R. H. Bojesen Christensen. 2016. ImerTest: Tests in Linear Mixed Effects Models. R. package versio 2.0-32. https://CNM.R. prouce.com/package=imerTest.


2.0-32. https://CRAIE.grouped.corg/package=immTest; Peterson, G. E. A. Leinkte, 1960. Duration of syllable nuclei in English. Journal of the Acoustical Society of America 32: 693-703. R Core Team. 2016. R A language and environment for statistical computing. Version 3.31. http://www.B-groiped.org. V an Heuver, W.J.B. P. Manders, E. Kellers & M. Brybasett. 2014. Subtlev UK-A new and Improved word frequency database for British English. Quarterly Journal of Experimental Psychology 67: 1176-1190.

- · Speakers: native SSBE-speaking students at the University of Cambridge) (n=21)
- Read sentences containing 101 monosyllabic and 53 disyllabic words with stressed /æ/
- Analysis here: 73 monosyllabic words (token n=1,790) • Vowel lengths measured in Praat (Boersma & Weenink 2016)

Previous reports of $/\alpha/$ length by word

Words tested

Words investigated, plotted by by-word random intercept

Does secondary /æ/-lengthening correlate with F1/F2?

- TRAP-STRUT rotation (Fabricius 2007) is an ongoing lowering and backing of TRAP and raising of STRUT in SSBE
- · This sample only included young adults, so apparent-time data cannot be discerned
- Correlation between F1 and F2 and lengthening coefficients tested
- Formula: F1 or F2 ~ coef_freq + voicing + manner + place + (1 | Word) + (1 | Word:Subject) + (1 | Subject)
- Result: the more lengthened, the *lower* the F1 (Est. = -0.27; std err = 0.128; p = 0.039); no F2 effect (p = 0.46)
- Result not found when Jones' (1918) categorizations are coded as categorical variable
- This means that longer /æ:/ words may also tend to be slightly more centralized
- No general frequency effect observed for either F1 or F2

Establishing by-word lengthening effects

- Linear mixed effects model run in R (R Core Team 2016)
- Word frequency as measured by SUBTLEX-UK also added as fixed effect (Van Heuven et al. 2014)
- p-values determined by Satterthwaite approximation to degrees of freedom calculated by ImerTest (Kuznetsova et al. 2016)
- By-word coefficients measure 'unexpected lengthening'

Formula: duration ~ voicing + manner + place + freq. + (1 | Word) + (1 | Word:Subject) + (1 | Subject)

Number of obs: 1790

Groups: Word:Sub	ject, 1481; Word	l, 73; Subject, 21

	Estimate	Conf. Int.	p-value
Fixed Parts			
(Intercept)	232.74	216.43 - 249.05	<.001***
voicing (voiceless)	-57.2	-67.6946.71	<.001***
manner (nasal)	-31.23	-49.9812.48	0.002**
manner (nas + stop)	-46.53	-63.5129.54	<.001***
manner (stop)	-28.98	-43.7614.20	<.001***
place (labial)	-13.55	-24.742.37	0.02*
place (pal-alveolar)	-9.7	-27.82 - 8.43	0.298
place (velar)	2.23	-10.51 - 14.98	0.732
frequency	6.62	1.39 - 11.84	0.016*

Discussion

- Secondary /æ/-lengthening is stable sub-phonemic, lexically-specific allophony: 'long' words targeted by Jones (1918) still have the highest coefficients
- Resembles first stages of primary /æ/-lengthening diachronic shift, but appears to have been stable for past 100 years
- Based on this statistical model, past linguists seem to have have intuited the BAD-LAD split on the basis of comparison to a phonological baseline
- Two possible ways to account for stability:
- Intergenerational transmission of subphonemic detail
- · Same structural pressures are at work now as they were in English 100 years ago
- Structural pressure hypothesis seems more likely: possible cumulative lengthening effect of emphatic/basic words
- Effect of frequency on duration is reverse of what is usually noted (Bybee 2001; Gahl 2007)
- F1 effect: centralizing consistent with reduction rather than emphatic tensing
- Not consistent with TRAP-STRUT rotation