The BAD-LAD split: Secondary /æ/-lengthening in Southern Standard British English

What conditions variation in the duration of /æ/ in Southern Standard British English (SSBE)?

- Vowel measurements in Praat of 21 native SSBE-speaking students (Cambridge) recorded reading sentences containing 101 monosyllabic and 53 disyllabic words with stressed /æ/
- Here: analysis of monosyllabic words
- Research questions:
 - Is this a phonemic split?
- Which postvocalic segments encourage lengthening?
- TRAP-BATH splits dubbed primary /æ/-lengthening, as opposed to this study's focus on secondary /æ/-lengthening

Secondary /æ/-lengthening: previous reports

- Jones (1918)
- 'short' lad, pad, cat, lamp
- 'long' bad, sad
- variable glad, bag, man, jam, back, that
- Wells (1982): "marginally contrastive long /æː/"
- 'short' lad, pad, cad, dad, fad
- 'long' bad, glad, clad, mad, sad, jam, jazz
- "rare to find contrastive length in environments other than that of a following /d/"
- Fudge (1977) recorded own (very complex) lexical split
- Minimal pairs included 'short' verbs jab, drag, flag, wag vs.
 'long' noun equivalents; can (modal) vs. can (noun)

•	Two con	sultations	carried	short [æ]	uncertain	long [æː]			
	out with	native SS	BE	pad, lad, fad,	glad	bad, sad,			
	cnaakar	s about th	۵ir	tad, cad,		mad			
	•			CAD, grad,					
	intuitior	ns in prepa	aration for	MAD, Vlad					
	this stuc	dy:		brag, wag,		bag, jag			
		·		lag, stag,		(Jaguar)			
	short [æ]	uncertain	long [æː]	rag, slag,					
	pad, lad,		bad, glad,	crag, jag					
	tad, Vlad,		sad	(sharp)					
	cad, CAD,								
	add			jab, grab,					
				crab, lab,					
	tag, brag,		bag	cab, stab,					
	sag			fab, slab,					
				blab					
	(door) jamb,		Tam, jam	/ 1.15					
	dam, RAM,		(traffic,	can (modal),		ran, man,			
	ram, swam		preserves),	can (noun)		tan, plan,			
	ran hadan		damn			man, began			
	ran, began			RAM	ham	ram Sam			
	rang cang			NAIVI	Halli	ram, Sam, Tam, pram,			
	rang, sang			gang, sang		cram, exam			
	cant (song)			garig, sarig		Clairi, Chairi			
	carre (30119)			pant, pants					
	cash, cache,			7 S , P S					
	bash			cramp, lamp					
				1,					
	badger		badge	sank, bank,					
	J			drank					
		jazz							
				maths					
				mafia					

References

Harris, J. 1986. Phonetic constraints on sociolinguistic variation. *Sheffield Working Papers in Language and Linguistics* 3: 120-43.

Harris, J. 1989. Towards a lexical analysis of sound change in progress. *Journal of Linguistics* 25(1):

Jones, D. J. 1972 [1918]. *An Outline of English Phonetics, Ninth Edition*. Cambridge: W. Heffer & Sons.

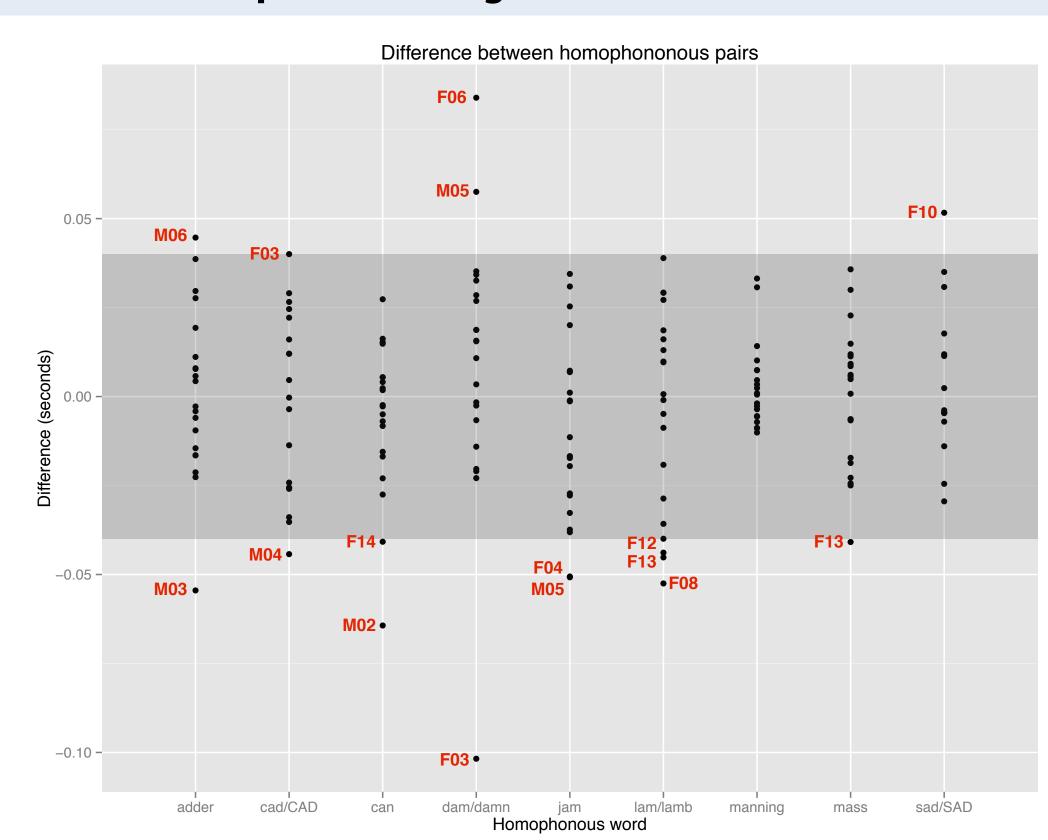
Fudge, E. 1977. Long and short [ae] in one Southern British speaker's English. *Journal of the International Phonetic Association 7*(2): 55-65.

Labov, W. 1971. Methodology, in W. O. Dingwall (ed.) *A Survey of Linguistic Science*. College Park, MD: Linguistics Program, University of Maryland.

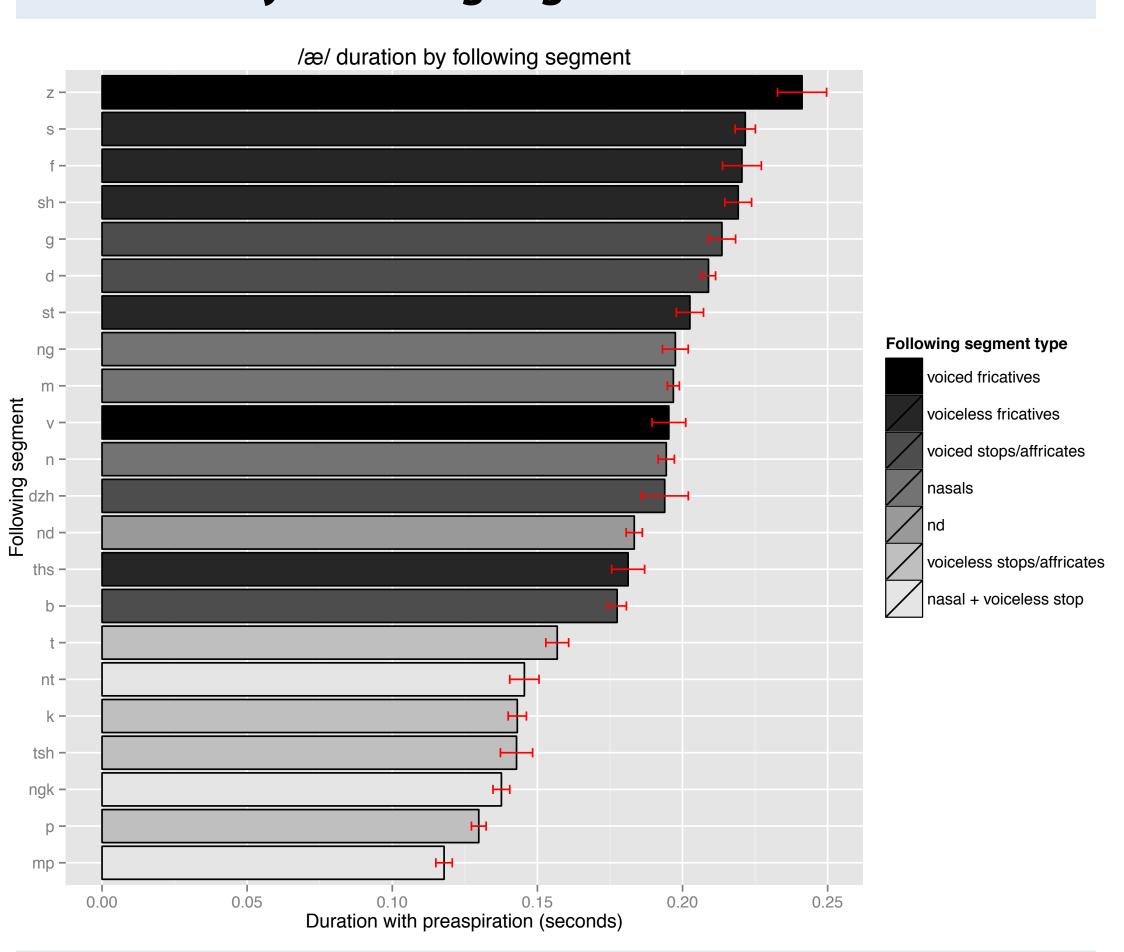
Labov, W. 2007. Transmission and Diffusion. *Language* 83(2): 344-387.

Peterson, G. E. & I. Lehiste. 1960. Duration of syllable nuclei in English. *Journal of the Acoustical Society of America* 32: 693-703.

Wells, J. C. 1982. *Accents of English* (Vols. 1-3). Cambridge: Cambridge University Press.

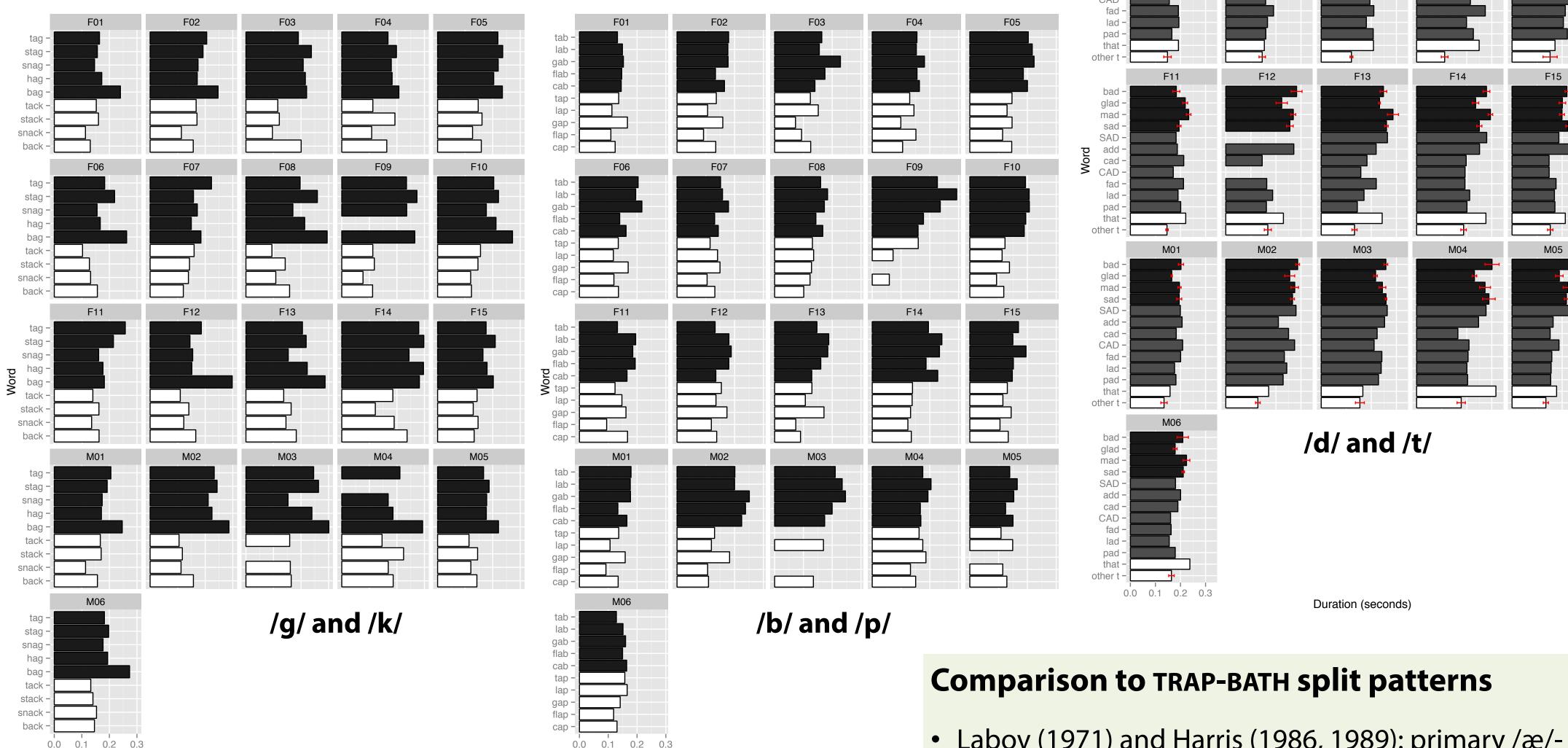

Meeting of the Linguistics Society of America, Washington, DC, 7-10 January 2016

Thomas Kettig, University of Cambridge (tkettig@gmail.com)


UNIVERSITY OF CAMBRIDGE

Minimal Pairs

- Several minimal pairs tested:
 - o adder (snake) vs. adder (someone who adds)
- o cad (person) vs. CAD (computer-aided design)
- o can (noun) vs. can (modal verb)
- o dam vs. damn
- o jam (traffic) vs. jam (preserve)
- o lam (escape) vs. lamb
- o manning (of a ship) vs. Manning (name)
- o mass (of an object) vs. mass (in a church)
- sad vs. SAD (Seasonal Affective Disorder)
- Differences below about 40ms in these vowels should be imperceptible (Lehiste 1970)
- No minimal pairs show significant duration differences


Durations by following segment

- Voicing of following consonant significantly affects duration (χ2 (1)=55.262, p<0.001)
- Manner of articulation of following consonant also affects vowel duration (χ 2 (5)=80.162, p<0.0001); /æ/before fricatives on average 0.064s \pm 0.012 longer than before stops (p<0.0001); fricatives also lengthened more than nasal + stop clusters by .084s \pm 0.012 (p<0.0001); more than nasals by 0.067s \pm 0.014 (p=0.0001) and more than affricates by 0.076s \pm 0.018 (p=0.0004)
- Place of articulation of following consonant not significant in the overall model (χ 2 (5)=0, p=1)

Vowel lengths of individual words for each speaker (postvocalic stops)

- /d/ and /t/: some speakers consistent in pre-/d/ durations (no split); others inconsistent, with large differences between lengths of pre-/d/ words
- /k/ and /g/: some lengthen bag much more than other /g/ words, others do not
- /p/ and /b/: lower voiced:voiceless duration ratio than other stop pairs
- Large amount of inter-speaker variation to be expected, since only one token per word per speaker collected (except for *bad, glad, mad, sad*)

Duration (seconds)

Default co-articulatory effects (Peterson & Lehiste 1960)

Duration (seconds)

- All else being equal, the vowel before a voiced consonant is longer than before its voiceless counterpart
- Following fricatives lengthen vowels more than stops, with nasals in between the two sets of voiced consonants
- Established hierarchy:

voiced fric. > nasals > voiced stops/affr. \approx voiceless fric. > voiceless stops/affr. \neq z ð v m n n g b d dz $\int \theta$ s f t k t $\int p$ articulatory lengthening environments - - - - > articulatory shortening environments

 But in the present experiment, duration measurements yield a different hierarchy (/z/ and /v/ excepted):

voiceless fric. ≥ voiced stops/aff. ≥ nasals > voiceless stops/aff. ≥ nasal + voiceless stop

Experimental results

- Despite some native speakers intuiting 'long' vs. 'short' vowels, no minimal pairs consistently differentiated by vowel length alone; secondary /æ/-lengthening does not appear to be a phonemic split
- Postvocalic /g/ and /d/ stand out for overall lengthening effects; postvocalic voiceless fricatives also notable lengthening environments
- Participants differ from each other in which words contain lengthened /æ/, but this variability could be due to a small sample of tokens

- Labov (1971) and Harris (1986, 1989): primary /æ/lengthening has taken place along a recurrent hierarchy of implicational weighting
- Table below:
 - Primary /æ/-lengthening environments (BATH)
 dark blue = all or most /æ/ lengthened
 - light blue = some /æ/ lengthened
 - red = no /æ/ lengthened
 - Secondary /æ/-lengthening environments, RP (+/-)
- Consonants (first row) ordered following Labov (1971), shaded following Peterson & Lehiste (1960)

	f	θ	S	m	n	d	d 3	b	g	J	V	Z	ŋ	р	t	tj	K
Northern Cities Shift																	
NYC																	
Philadelphia																	
RP (Jones)				±	±	±			±						±		±
RP (Wells)				+		±						+					
RP (Fudge)	-	_	_	±	±	±	±	±	±	-	±	±	_	-	-	-	-
General American																	
North England																	

Discussion

- Observed lengthening deviates from expected coarticulatory hierarchy
- Similarities between primary and secondary /æ/-lengthening environments: developments common enough to have occurred twice independently?
- Or could be through a common history, with secondary lengthening representing a linguistic 'residue' from the TRAP-BATH split
- Wells (1982): primary /æ/-lengthening was once a quantity difference, only later developed different quality; conceivable some words/environments have continued to generate /æː/ while others changed over to /ɑː/